The yielding transition in amorphous solids under oscillatory shear deformation

نویسندگان

  • Premkumar Leishangthem
  • Anshul D. S. Parmar
  • Srikanth Sastry
چکیده

Amorphous solids are ubiquitous among natural and man-made materials. Often used as structural materials for their attractive mechanical properties, their utility depends critically on their response to applied stresses. Processes underlying such mechanical response, and in particular the yielding behaviour of amorphous solids, are not satisfactorily understood. Although studied extensively, observed yielding behaviour can be gradual and depend significantly on conditions of study, making it difficult to convincingly validate existing theoretical descriptions of a sharp yielding transition. Here we employ oscillatory deformation as a reliable probe of the yielding transition. Through extensive computer simulations for a wide range of system sizes, we demonstrate that cyclically deformed model glasses exhibit a sharply defined yielding transition with characteristics that are independent of preparation history. In contrast to prevailing expectations, the statistics of avalanches reveals no signature of the impending transition, but exhibit dramatic, qualitative, changes in character across the transition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macroscopic yielding in jammed solids is accompanied by a nonequilibrium first-order transition in particle trajectories.

We use computer simulations to analyze the yielding transition during large-amplitude oscillatory shear of a simple model for soft jammed solids. Simultaneous analysis of global mechanical response and particle-scale motion demonstrates that macroscopic yielding, revealed by a smooth crossover in mechanical properties, is accompanied by a sudden change in the particle dynamics, which evolves fr...

متن کامل

Variable-amplitude oscillatory shear response of amorphous materials.

Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycl...

متن کامل

Study of Shear Viscosity of Amorphous Materials

Viscoelastic properties of amorphous solids deformed under uniform shear stress were studied using a kind of sandwich method with utilizing a sensitive optical technique. Time-dependent deformation data were analyzed on the basis of a mechanical model of anelasticity plus viscosity. Experiments were performed to determine the temperature dependence of viscosity for several kinds of inorganic gl...

متن کامل

Reversible plastic events during oscillatory deformation of amorphous solids.

The effect of oscillatory shear strain on nonaffine rearrangements of individual particles in a three-dimensional binary glass is investigated using molecular dynamics simulations. The amorphous material is represented by the Kob-Andersen mixture at the temperature well below the glass transition. We find that during periodic shear deformation of the material, some particles undergo reversible ...

متن کامل

Dynamics of shear-transformation zones in amorphous plasticity: energetic constraints in a minimal theory.

We use energetic considerations to deduce the form of a previously uncertain coupling term in the shear-transformation-zone (STZ) theory of plastic deformation in amorphous solids. As in the earlier versions of the STZ theory, the onset of steady deformation at a yield stress appears here as an exchange of dynamic stability between jammed and plastically deforming states. We show how an especia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017